
The best way to measure the full stress tensor in the material with the texture as shown in Figure 1 is:
1.) Measure lattice plane distances in directions 1 to 9, where intensity is highest.
2.) Calculate (r,hkl) = (d(r,hkl)-d0)/d0.
3.) Build the matrix equation

(1)

and solve it for ij.
For that aim the F-tensors must  be known for the directions 1 to 9.
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Motivation
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The principle for the measurement of an F-tensor is to establish a
system of linear equations similar to Eq. (1) but with Fij and ij
interchanged. This is possible because of the symmetry in F and 
of the basic equation

With at least six – properly chosen – stress states and measured
each time in the direction r the components of F can be calculated.

Since the texture of Figure 1 obviously has a fourfold symmetry,
it is sufficient to measure the F-tensors for the directions 1, 2
and 6. The F-tensors for the directions 3, 4, 5 can be calculated
from those of direction 2  by a tensor transformation, whereas F
for directions 7, 8, 9 can be obtained by the same tensor trans-
formation from 6.

Measurement of F (r, hkl)

ijij hklFhkl ,, rr

The specimen was shaped as a cuboctahedron,  Figure 2a.
Compressive forces applied on each of the seven pairs of parallel faces yield
seven different stress states. The direction of these forces are symbolized by
s1, s2 etc. in Figure 2a.
For the direction s1 which is parallel to the z-axis, the stress tensor is given by

This stress tensor was calculated using the finite element method and is present
for the centre of the cuboctahedral specimen. An example of a calculated stress
distribution is shown in Figure 3.

For a compressive force applied on any other pair of parallel faces the stress
tensor is calculated by the tensor transformation

With these seven different stress tensors a well conditioned system of linear
equations for the six independent components of the F-tensor is obtained, by

The compressive force is generated in a loading frame mounted in the Eulerian
cradle of the STRESS-SPEC goniometer, Figure 4. Fig. 4
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Generation of different stress states
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