Measurement of all six components of X-ray elastic factors

Balder Ortner¹, Thomas Antretter², Michael Hofmann³, Ewald Werner ${ }^{4}$

${ }^{1}$ Montanuniversität Leoben, Leoben, Austria; ortner@unileoben.ac.at
${ }^{2}$ Institut für Mechanik, Montanuniversität Leoben, Leoben, Austria
${ }^{3}$ FRM II, TU München, Garching, Germany
${ }^{4}$ Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Garching, Germany

Motivation

The best way to measure the full stress tensor in the material with the texture as shown in Figure 1 is:
1.) Measure lattice plane distances in directions 1 to 9 , where intensity is highest.
2.) Calculate $\varepsilon(\boldsymbol{r}, h k I)=\left(d(\boldsymbol{r}, h k l)-d_{0}\right) / d_{0}$.
3.) Build the matrix equation
$\left(\begin{array}{c}\varepsilon\left(\boldsymbol{r}_{1}, 220\right) \\ \varepsilon\left(\boldsymbol{r}_{2}, 220\right) \\ \cdot \\ \cdot \\ \cdot \\ \varepsilon\left(\boldsymbol{r}_{N}, 220\right)\end{array}\right)=\left(\begin{array}{cccc}\boldsymbol{F}_{11}\left(\boldsymbol{r}_{\mathbf{r}}, 220\right) & \boldsymbol{F}_{22}\left(\boldsymbol{r}_{\mathbf{r}}, 220\right) & \cdots & 2 \boldsymbol{F}_{12}\left(\boldsymbol{r}_{1}, 220\right) \\ \boldsymbol{F}_{11}\left(\boldsymbol{r}_{2}, 220\right) & \boldsymbol{F}_{22}\left(\boldsymbol{r}_{2}, 220\right) & \cdots & 2 \boldsymbol{F}_{12}\left(\boldsymbol{r}_{2}, 220\right) \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ \boldsymbol{F}_{11}\left(\boldsymbol{r}_{N}, 200\right) & \boldsymbol{F}_{22}\left(\boldsymbol{r}_{N}, 200\right) & \cdots & 2 \boldsymbol{F}_{12}\left(\boldsymbol{r}_{N}, 200\right)\end{array}\right)\left(\begin{array}{c}\sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12}\end{array}\right)$

Fig. 1
and solve it for $\sigma_{i j}$.
(1)
(110)

For that aim the F-tensors must be known for the directions 1 to 9 .

Measurement of $F(r, h k)$

The principle for the measurement of an F-tensor is to establish a system of linear equations similar to Eq. (1) but with $\boldsymbol{F}_{i j}$ and $\sigma_{i j}$ interchanged. This is possible because of the symmetry in F and σ of the basic equation

$$
\begin{equation*}
\varepsilon(\boldsymbol{r}, h k l)=F_{i j}(\boldsymbol{r}, h k l) \sigma_{i j} \tag{2}
\end{equation*}
$$

With at least six - properly chosen - stress states and ε measured each time in the direction \boldsymbol{r} the components of \boldsymbol{F} can be calculated.

Since the texture of Figure 1 obviously has a fourfold symmetry, it is sufficient to measure the F-tensors for the directions 1,2 and 6 . The F-tensors for the directions 3, 4, 5 can be calculated from those of direction 2 by a tensor transformation, whereas F for directions 7, 8, 9 can be obtained by the same tensor transformation from 6.

Generation of different stress states

The specimen was shaped as a cuboctahedron, Figure 2a.
Compressive forces applied on each of the seven pairs of parallel faces yield seven different stress states. The direction of these forces are symbolized by $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ etc. in Figure 2a.
For the direction \boldsymbol{s}_{1} which is parallel to the z-axis, the stress tensor is given by

$$
\left\{\sigma_{i j}\left(s_{1}\right)\right\}=\left(\begin{array}{lll}
\sigma_{\mathrm{I}} & 0 & 0 \tag{3}\\
0 & \sigma_{\mathrm{I}} & 0 \\
0 & 0 & \sigma_{\mathrm{II}}
\end{array}\right)
$$

This stress tensor was calculated using the finite element method and is present for the centre of the cuboctahedral specimen. An example of a calculated stress distribution is shown in Figure 3.

For a compressive force applied on any other pair of parallel faces the stress tensor is calculated by the tensor transformation

$$
\begin{equation*}
\sigma_{i j}(\boldsymbol{s}, h k l)=D_{i k}(\boldsymbol{s}) \sigma_{k l}\left(s_{1}\right) D_{j l}(\boldsymbol{s}) \tag{4}
\end{equation*}
$$

With these seven different stress tensors a well conditioned system of linear equations for the six independent components of the F-tensor is obtained, by

$$
\left(\begin{array}{c}
\varepsilon(\boldsymbol{r}, 220) \tag{5}\\
\varepsilon(\boldsymbol{r}, 220) \\
\cdot \\
\cdot \\
\cdot \\
\varepsilon(\boldsymbol{r}, 220)
\end{array}\right)=\left(\begin{array}{cccc}
\sigma_{11}\left(\boldsymbol{s}_{1}\right) & \sigma_{22}\left(\boldsymbol{s}_{1}\right) & \cdots & 2 \sigma_{12}\left(\boldsymbol{s}_{1}\right) \\
\sigma_{11}\left(s_{2}\right) & \sigma_{22}\left(s_{2}\right) & \cdots & 2 \sigma_{12}\left(s_{2}\right) \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\sigma_{11}\left(s_{9}\right) & \sigma_{22}\left(s_{9}\right) & \cdots & 2 \sigma_{12}\left(s_{9}\right)
\end{array}\right)\left(\begin{array}{c}
F_{11} \\
F_{22} \\
F_{33} \\
2 F_{23} \\
2 F_{13} \\
2 F_{12}
\end{array}\right) .
$$

The compressive force is generated in a loading frame mounted in the Eulerian cradle of the STRESS-SPEC goniometer, Figure 4.

Fig. 2a

Fig. 2b

Fig. 3

Fig. 3

Fig. 4

Acknowledgements

This research project has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, research Infrastructures, Contract no: RII3-CT-2003-505925 and the Deutsche Forschungsgemeinschaft (DFG) under contracts WE 2351/11-1 and PE 580/7-1. The authors are grateful for the beam time allotted by FRM-II.

